Algorithms: Graph Search (BFS and Connected Components)

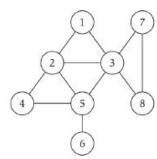
Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two nodes and t, what is the length of the shortest path between s and t?

Applications.

- Navigation (Google Maps).
- Maze traversal.
- Kevin Bacon number (or Erdős Number).
- Fewest number of hops in a communication network.



Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

- L₀ = { s }.
 L₁ = all neighbors of L₀.
- L₁ = all neighbors of L₀.
 L₂ = all nodes that do not belong to L₀ or L₁, and that have an edge to a
- node in L_1 .

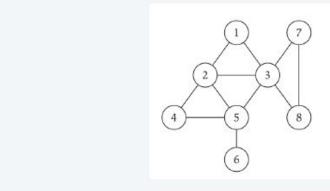
 L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

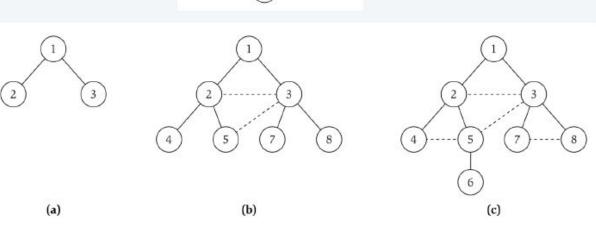
 $L_1 = L_2 - \cdots - L_{n-1}$

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth-first search

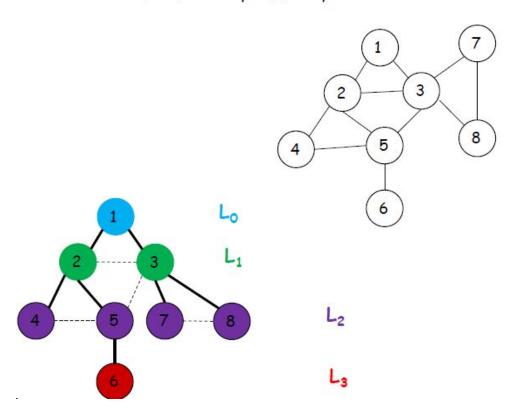
Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then, the levels of x and y differ by at most 1.





Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.



Breadth-first search: analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the graph is given by its adjacency representation.

Pf.

- Easy to prove O(n²) running time:
- at most n lists L[i]
- - each node occurs on at most one list; for loop runs ≤ n times
 when we consider node u, there are ≤ n incident edges (u, v),

• Actually runs in O(m+n) time:

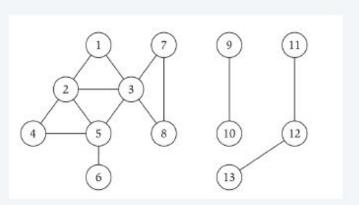
and we spend O(1) processing each edge

- when we consider node u there are degree(u) incident edges (u u)
- when we consider node u, there are degree(u) incident edges (u, v)
- each edge (u, v) is counted exactly twice

- total time processing edges is $\sum_{u} F_{u} degree(u) = 2m$.

Connected component

Connected component. Find all nodes reachable from s.

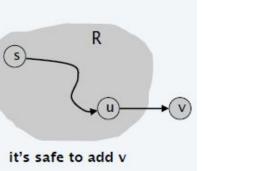


Connected component containing node $1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Connected component

R will consist of nodes to which s has a path Initially $R = \{s\}$ While there is an edge (u,v) where $u \in R$ and $v \notin R$ Add v to R Endwhile

Connected component. Find all nodes reachable from s.



Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- DFS = explore in a different way.

Suggested Reading

- Algorithm Design by Jon Kleinberg, Eva Tardos
 - Chapter 3
 - Section: 3.2