Algorithms:

Graph Search (BFS
and Connected
Components)




Connectivity

s-t connectivity problem. Given two node s and 1, is there a path
between s and 1?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and 1?

Applications.
- Navigation (Google Maps).
. Maze traversal.
Kevin Bacon number (or Erdds Number).
. Fewest number of hops in a communication network.



Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one “layer” at a time.

L L — L
BFS algorithm. aa il N

o - do=45}

- L, = all neighbors of L.

« L, = all nodes that do not belong to L, or L, and that have an edge to a
node in L,.

- L., = all nodes that do not belong to an earlier layer, and that have an
edge to a node in L,.

Theorem. For each i, L, consists of all nodes at distance exactly i
from s. There is a path from s to ¢ iff s appears in some layer.



Breadth-first search

Property. Let T be a BFS tree of G=(V.E), and let (x.y) be an edge of G.
Then, the levels of x and y differ by at most 1.

(a) (b)




Breadth First Search

Property. Let T be a BFS tree of 6 = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.




Breadth-first search: analysis

Theorem. The above implementation of BFS runs in OGn + n) time if the
graph is given by its adjacency representation.

Pf.
* Easy to prove O(n2) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < » times
- when we consider node u, there are < n incident edges (i.v),
and we spend O(1) processing each edge

« Actually runs in OGn + n) time:
- when we consider node u, there are degree(u) incident edges (u.v)
- total time processing edges is &, degree(u) = 2m. =

each edge (u, v) is counted exactly twice
in sum: once in degree(u) and once in degree(v)



Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 ={1.2.3.4.5.6.7.8 }.



Connected component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v¢R
Add v to R

Endwhile it’s safe to add v

Theorem. Upon termination, R is the connected component containing s.
* BFS = explore in order of distance from s.
« DFS = explore in a different way.



Suggested Reading

= Algorithm Design by Jon Kleinberg, Eva Tardos
¢ Chapter 3
® Section: 3.2






